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The steady laminar incompressible viscous magneto hydrodynamic boundary layer flow of an Eyring- Powell 
fluid over a nonlinear stretching flat surface in a nanofluid with slip condition and heat transfer through melting 
effect has been investigated numerically. The resulting nonlinear governing partial differential equations with 
associated boundary conditions of the problem have been formulated and transformed into a non-similar form. 
The resultant equations are then solved numerically using the Runge-Kutta fourth order method along with the 
shooting technique. The physical significance of different parameters on the velocity, temperature and 
nanoparticle volume fraction profiles is discussed through graphical illustrations. The impact of physical 
parameters on the local skin friction coefficient and rate of heat transfer is shown in tabulated form. 
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1. Introduction 

 
 The study of heat transfer over a stretching surface is of significant importance due to numerous 
applications in industrial and technological processes such as cooling of metallic plates, glass fibers, 
extrusion of polymer sheets and boundary layer along liquid films in concentration processes, paper 
production and metal spinning. The rate of heat transfer at the stretching surface affects deeply the quality of 
the final products which must fulfill the desired specifications. Crane [1] was the first who studied a two 
dimensional stretching surface in a quiescent fluid. After this pioneering work, the flow field over a 
stretching surface has drawn considerable attention and a good amount of literature has been generated on 
this problem [2–9]. 
 The mathematical formulation for flows of non-Newtonian fluids in general is more complex. The 
most frequently used models of non-Newtonian models are the second grade fluids e.g. Maxwell, Oldroyd-B 
and power law. A broad description of the behaviour in both steady and unsteady flow situations, together 
with mathematical models can be found in [10–17]. The Powell-Eyring model has certain advantages over 
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the other non-Newtonian fluid models. Firstly, it is deduced from the kinetic theory of liquids rather than the 
empirical relation. Secondly, it correctly reduces to Newtonian behaviour for low and high shear rates. The 
study of a Powell-Eyring fluid has attracted the researchers of fluid dynamics due to its numerous 
applications in science and technology. Patel and Timol [18] numerically examined the flow of a Powell-
Eyring model through asymptotic boundary conditions. Hayat et al. [19] studied the steady flow of a Powell-
Eyring fluid over a moving surface with convective boundary conditions. Flow and heat transfer of a Powell-
Eyring fluid over a shrinking surface in a parallel free stream is presented by Rosca and Pop [20]. Jalil et al. 
[21] studied the flow and heat transfer of a Powell-Eyring fluid over a moving surface in a parallel free 
stream. The problem of a slider bearing lubricated with Eyring Powell fluid is presented numerically using 
the homotopy perturbation analysis by Islam et al. [22]. Regarding the study of Powell-Eyring on fluid flow 
and heat transfer, some former study of Powell-Eyring fluid flow have been presented in the works [23–24]. 
The flow and heat transfer of a Powell-Eyring fluid over a continuously moving surface in the presence of a 
free stream velocity is investigated by Hayat et al. [25]. 
 Due to the small size and very large specific surface areas of nanoparticles, nanofluids have superior 
properties such as high thermal conductivity, minimal clogging in flow passages, long-term stability, and 
homogeneity. Thus, nanofluids have a wide range of potential applications in electronic cooling, drug 
administration mechanisms, peristaltic pumps for diabetic patients, solar collectors and nuclear applications. 
Based on these real world applications, Choi [26]  introduced the concept of nanofluid in order to develop 
advanced heat transfer fluids with substantially higher conductivities. Later on, the boundary layer flow of a 
nanofluid past a stretching surface under the effect of Brownian motion and thermophoresis was investigated 
by Khan and Pop [27]. Kuznetsov and Nield [28] investigated the natural convective boundary-layer flow of 
a nanofluid past a vertical plate by incorporating Brownian motion and thermophoresis effects. Gorla et al. 
[29]  reported the numerical solutions for a steady boundary layer flow of a nanofluid on a stretching circular 
cylinder in a stagnant free stream. 
 A significant number of studies have applied the no-slip boundary conditions at the wall. However, 
the no-slip assumption is not applicable when a fluid flows in micro and nano channels and it must be 
replaced by slip boundary conditions (Aziz [30]). Nield and Kuznetsov [31] presented an analytic solution 
for a convection flow in channel or circular ducts saturated with a rarefied gas in a slip-flow regime. Beavers 
and Joseph [32] investigated fluid flow over a permeable wall with a slip boundary condition. The effects of 
a second order velocity-slip and temperature-jump on basic gaseous fluctuating micro-flows were analysed 
by Hamdan et al. [33]. The effects of partial slip on a steady boundary layer stagnation-point flow of an 
incompressible fluid and heat transfer from a shrinking sheet were investigated by Bhattacharyya et al. [34]. 
 Melting and solidification play a vital role in the advanced technology process. Researchers are 
interested in exploring melting heat transfer due to a wide range of applications of the melting phenomenon 
of solid-liquid phase change in the welding process, crystal growth, thermal protection, heat transportation, 
melting of permafrost, preparation of semiconductors material and the casting of a manufacturing process. 
Initially, Robert [35] described the melting phenomenon of ice slab placed in a hot air stream. A boundary 
layer stagnation point flow of a Maxwell fluid towards a stretching sheet with the melting phenomenon is 
analyzed by Hayat et al. [36]. Das [37] discussed the melting phenomenon in the magneto hydrodynamic 
flow over a moving surface with thermal radiation. Melting heat transfer in a steady laminar flow over a 
stationary flat plate was studied by Epstein and Cho [38]. Then Kazmierczak et al. [39] studied the steady 
convection flow over a flat plate embedded in a porous medium with the melting heat transfer effect. Gorla 
et al. [40] studied the melting heat transfer in a mixed convection flow over a vertical plate. Recently, 
Bachok et al. [41] analized a steady two-dimensional stagnation point flow and heat transfer over a melting 
stretching sheet. Anuar Ishak, Roslinda Nazar et al. [42] studied the laminar boundary layer flow and heat 
transfer from a warm, laminar liquid flow to a melting surface moving parallel to a constant free stream. 
Gireesha et al. [43] investigated the effects of melting heat transfer in boundary layer stagination-point flow 
of a nanofluid toward a stretching surface with heat source/sink and magnetic field.  
 Over the last few years, a considerable amount of experimental and theoretical work has been carried 
out to determine the role of natural convection in the kinetics of heat transfer accompanied with the melting 
or solidification effect. Processes involving melting heat transfer in non-Newtonian fluids have promising 
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applications in thermal engineering, such as oil extraction, magma, solidification, melting of permafrost, 
geothermal energy recovery, silicon wafer process, thermal insulation, etc. Chamkha et al. [44] analysed the 
effect of a transverse magnetic field on a hydro magnetic, forced convection flow with heat and mass transfer 
of a nanofluid over a horizontal stretching plate under the influence of melting and heat generation or 
absorption. Gorla et al. [45] presented a boundary layer analysis for a warm and laminar flow of a nanofluid 
over a melting surface moving parallel to a uniform free stream.  
 Recently, Panigrahi et al. [46] studied the analytical self-similar solution of the mixed convection flow 
of a non-Newtonian Powell Eyring fluid over a nonlinear stretching vertical permeable surface in the presence 
of a magnetic field. Even though considerable progress has been made on flow phenomena over a stretching 
sheet, still more work is needed to understand the effect of melting involving different non-Newtonian models. 
The paper focuses on the study of a non-Newtonian Powell Eyring fluid over a melting stretching permeable 
vertical surface in the presence of a magnetic field, in this study the velocity slip conditions are included. A 
suitable transformation is used to transform the partial differential equations to a system of ordinary differential 
equations together with boundary conditions. The resulting system of ordinary differential equations is solved 
using the well-known Runge-Kutta technique along with the shooting method. 
 
2. Mathematical formulation 
 
 Let us consider a two dimensional magneto hydrodynamic flow of an incompressible Powell–Eyring 
nanomaterial. The flow is caused by a nonlinear stretching surface. Features of thermophoresis and 
Brownian motion are taken into consideration. The x  axis and y  axis are taken parallel and transverse to 

the stretching surface. The sheet at y 0  is stretching along the x-direction with velocity ( ) nu x cxw   where 

c  and n  are positive constants. The Powell-Eyring fluid is electrically conducted subject to a non-uniform 
magnetic field applied in the y  direction. It is assumed that the temperature of the melting surface is Tm  

while the temperature at the free stream is T  such that .T Tm   Further, it is assumed that the magnetic 
Reynolds number is small so that the induced magnetic field is neglected and that the heat generation or 
absorption effect is based on the difference between the local and melting temperatures. Assumptions of a 
low magnetic Reynolds number and boundary layer approximation are employed in the mathematical 
development. The extra stress tensor for the Powell–Eyring fluid is 
 

  sinh
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 In which   stands for the dynamic viscosity and   and 1c  for material constants. The Taylor 
expansion for the inverse hyperbolic term in the above equation is 
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 The boundary layer expressions for the two-dimensional magneto hydrodynamic flow of the Powell-
Eyring nanofluid are 
 

  
u v

0
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 
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,                                                                                          (2.1) 
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 Here u  and v  show the velocity components along the horizontal and vertical directions,
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
  represents the non-uniform magnetic field,
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stands for the kinematic viscosity, f
 

for density of the base liquid,
 
  for the electrical conductivity, T  for temperature, C  for the nanoparticle 

volume fraction,
 

( )

( )

c p

c f


 

  
 is the ratio between the effective heat capacity of the nanoparticle material and 

heat capacity of the fluid, c is the volumetric volume expansion coefficient and p  is the density of the 

particles,  fk c    for the thermal diffusivity of fluid, k for the thermal conductivity, TD  for the 

thermophoretic diffusion constant, DB  for the Brownian diffusivity and T  for ambient fluid temperature. 

The associated boundary conditions are 
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and ( ) nu x cxw  ; here c  shows the rate of the stretching surface,   is the slip coefficient having dimension 

of length, Tm  is the temperature of the stretching surface, n  is the power-law index and C  is the ambient 

fluid concentration, Further, k  is the thermal conductivity,   is the latent heat of the fluid and C
s

 is the heat 

capacity of the solid surface.  
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 Equation (2.7) states that the heat conducted to the melting surface is equal to the heat of melting 
plus the sensible heat required to raise the solid surface temperature T0  to its melting temperature .Tm (see 

Epstein and Cho [38]) 
 Introducing the following similarity transformations 
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by using similarity transformations Eqs (2.1), (2.2), (2.4) and (2.6) reduces to 
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and the boundary conditions are 
 

  

       Pr [ ] [ ] ,  ' * , [ ] ,  

[ ] [ ] , [ ] ,  [ ] ,  [ ] .

Š
n 1 3

f 0 Me 0 0 f 0 1 1 f 0 f 0 0 1
3 2

Nb 0 Nt 0 0 f 0 0 0

 
           

             

    
        

 (2.13)            

 

 Here ε  and   stand for fluid parameters,   is the slip velocity parameter, Pr stands for the Prandtl 
number, Me is the dimensionless melting parameter, M is the magnetic parameter, Gr is the thermal Grashof 
number, Gc is the solutal Grashof number, Nt stands for the thermophoresis parameter, Nb for the Brownian 
motion parameter and Le for the Lewis number. These parameters are defined by 
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with c p  being the specific heat of the fluid at constant pressure. It is worth mentioning that the melting 

parameter Me is a combination of the Stefan numbers  c T Tp m   and  m 0c T Ts   for the liquid and 

solid phases, respectively. 
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 Expressions for the local skin friction coefficient C fx
 and local Nusselt number Nux  are defined as 
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                                                                     (2.15) 

 
where k  is the thermal conductivity of the nanofluid, in which w  the wall shear stress and qw  is the wall 
heat flux,  given by 
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applying similarity transformations (2.9), the skin friction coefficient and Nusselt number  are converted to 
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where 
( )

Re
U x xw

x 


 is local the Reynolds number. 

 
3. Numerical results and discussion 
 
 In this section, we discuss theoretically and show graphically the behavior of different physical 
quantities which are involved in the present flow problem. The set of Eqs (2.10)-(2.12) is highly nonlinear 
and coupled hence it cannot be solved analytically. The numerical solutions of Eqs (2.10)-(2.12) subject to 
the boundary conditions (2.13) are obtained using an efficient numerical shooting technique with a fourth 
order Runge-Kutta scheme. For the purpose of providing physical insight into the present problem, 
comprehensive numerical computations are carried out for various values of the flow parameters which 
describe the flow characteristics and the results are illustrated graphically. For computational purposes, the 
reason of integration   is considerd as 0 to   is equivalent to 8, where   corresponds to    which 
lies very well outside the momentum and thermal boundary layer. The present results are compared with 
these of Cortell [47], Rana and Bargava [48] and found in good agreement. 
 A representative set of graphical results for the velocity, temperature and nanoparticle volume 
fraction as well as the skin friction, local Nusselt number and local Sherwood number is presented and 
discussed for different flow parameter values. To verify the accuracy of the numerical results we compared 
our results with those given by Cortell [47], Rana and Bargava [48] as shown in Tab.1. The results are in 
excellent agreement. 
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Table 1.  Comparison for '( )0  for various values of n. without nanoparticles and 0  , r 0 , Gr 0 , 
Gc=0  and Me 0 . 

 
Pr   n  Cortell [47] Rana and Bargava [48] Present 
1 0.2 0.610262 0.6113   .0 610201  
 0.5 0.595277 0.5967   .0 595200  
 1.5 0.574537 0.5768   .0 574729  

5 0.2 1.607175 1.5910   .1 607786  
 0.5 1.586744 1.5839   .1 586782  
 1.5 1.557463 1.5496   .1 557695  

 
 Figures 1a-1c explains the effect of the melting parameter Me on the velocity, temperature and 
nanoparticle volume fraction profiles. It is observed that for an increasing value of Me the velocity and 
boundary layer thickness decrease. The temperature distribution decreases with an increasing melting 
parameter Me. This is because an increasing Me with increasing the intensity of melting, which acts as 
blowing boundary conditions at the stretching surface and hence tends to thicken the boundary layer.  
Melting parameters reduce the nanoparticle volume fraction profile. 
 

      
Fig.1a. Effect of the melting parameter on velocity 

profiles. 
Fig.1b. Effect of the melting parameter on 

temperature profiles.    
 

 
 

Fig.1c. Effect of the melting parameter on nanoparticle volume fraction profiles. 
 
 The influence of the slip velocity parameter   on the velocity, temperature and nanoparticle volume 
fraction is presented in Fig.2. We know that the slip velocity parameter decelerates the fluid flow along the 
surface. Hence the momentum boundary layer thickness decreases with an increasing slip velocity parameter 
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 . The effect of the slip velocity parameter   leads to enhancing temperature profiles. The nanoparticle 

volume fraction profiles increase with the increasing slip velocity parameter   away from the plate, while a 
reverse trend is noticed in the vicinity of the plate. The effects of the non-linear stretching parameter n on the 
velocity, temperature and nanoparticle volume fraction are shown in Figs 3a-3c respectively. As an 
increasing nonlinear stretching sheet parameter n decelerates the fluid velocity, it can be noticed that the 
temperature and nanoparticle volume fraction increases as increasing in the stretching sheet parameter n. 
Additionally, the temperature and nanoparticle volume fraction are dependent on the stretching sheet 
parameter. 
 

      
Fig.2a. Effect of the velocity slip parameter on 

velocity profiles. 
Fig.2b. Effect of the velocity slip parameter on 

temperature profiles. 
 

 
Fig.2c. Effect of the velocity slip parameter on nanoparticle fraction profiles. 

 

     
Fig.3a. Effect of the non-linear stretching parameter 

on velocity profiles. 
Fig.3b. Effect of the non-linear stretching parameter 

on temperature profiles. 
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Fig.3c. Effect of the non-linear stretching parameter on nanoparticle volume fraction profiles. 
 
 Figures 4a-4c illustrate the effect of the Prandtl number Pr on the velocity, temperature and 
nanoparticle volume fraction. It is seen that the magnitude of the velocity gradient at the surface is higher for 
higher values of Pr. Thus the skin friction increases with an increase of Pr. It is observed that as increasing Pr 
is leading to decrease the temperature profiles as well as decreases the thermal boundary layer thickness. The 
nanoparticle volume fraction decreases with the increasing Prandtl number value. This is due to the fact that 
for small values of Pr are equivalent to larger values of thermal conductivities and therefore it is able to 
diffuse away from the stretching sheet. 
 

 
Fig.4a. Effect of the Prandtl number on velocity 

profiles. 
Fig.4b. Effect of the Prandtl number on temperature 

profiles.  
 

 
 

Fig.4c. Effect of the Prandtl number on nanoparticle volume fraction profiles. 
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 Figure 5 shows that when the Eyring-Powell parameter   increases, then the velocity profiles 

increase. Since the Eyring-Powell parameter 
1

1

c
 

 
 so by increasing the Eyring-Powell parameter   the 

viscosity of the fluid, i.e, ,  decreases which causes increasing velocity also fluid becomes less viscous for 

larger values of Eyring-Powell parameter   which enhances fluid velocity.  
 

 
 

Fig.5. Effect of the Eyring-Powell fluid parameter on velocity profiles. 
 
 Figures 6a-6c show changes in the velocity, temperature and nanoparticle volume fraction profiles 
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profile decreases. It is noticed that the temperature and nanoparticle volume fraction profiles are increased 
with an increasing magnetic field parameter M. 
 

 
 

Fig.6a. Effect of the magnetic field parameter on 
velocity profiles. 

Fig.6b. Effect of the magnetic field parameter on 
temperature profiles. 
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Fig.6c. Effect of the magnetic field parameter on nanoparticle volume fraction profile. 
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increases with increasing the value of the thermophoresis parameter Nt . Figure 8 shows that the nanoparticle 
volume fraction decreases by accelerating the Brownian motion parameter Nb . This holds practically 
because with an increase in Nb  the random motion collusion of the macroscopic particles of the fluid 
increases. This reduces the concentration of the fluid, also the Brownian motion parameter Nb  decreases the 
concentration boundary layer thickness. 
 

     
 

Fig.7a. Effect of the thermophoresis parameter on 
velocity profiles. 

Fig.7b. Effect of the thermophoresis parameter on 
temperature profiles. 
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Fig.7c. Effect of the thermophoresis parameter on 

nanoparticle volume fraction profiles. 
Fig.8. Effect of the Brownian motion parameter on 

nanoparticle volume fraction profiles. 
 
 Figure 9 shows the effect of the Lewis number Le on the nanoparticle volume fraction. The 
increasing Le number the nanoparticle volume fraction decreases and boundary layer thickness decreases. 
This is due to the fact that the mass transfer rate increases. The increasing Lewis number Le which enhances 
volume fraction nanoparticle. 
 Figures 10a-10c and 11a-11c depict the variation of the thermal Grashof number Gr and the solutal 
Grashof number Gc on velocity, temperature and nanoparticle volume fraction profiles, respectively. It is 
noticed that an increase in the momentum boundary layer thickness and increasing velocity profiles 
accompanies with an increasing Gr and Gc. The temperature as well as the nanoparticle volume fraction 
profiles decrease with increasing the values of Gr and Gc. The thermal Grashof number Gr signifies the 
relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the boundary layer as 
expecting it is noticed that there is a rise in the velocity profiles due to the enhancement of thermal buoyancy 
force. The solutal Grashof number Gc defines the ratio of the species buoyancy force to the viscous 
hydrodynamic force due to increasing the species buoyancy force there is an increasing the velocity.   
 

  
 

Fig.9. Effect of the Lewis number on nanoparticle 
volume fraction profiles. 

Fig.10a. Effect of the thermal Grashof number on 
velocity profiles.
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Fig.10b. Effect of the thermal Grashof number on 

temperature profiles. 
Fig.10c. Effect of the thermal Grashof number on 

nanoparticle volume fraction profiles.
 

   
 
Fig.11a. Effect of the solutal Grashof number on 

velocity profiles. 
Fig.11b. Effect of the solutal Grashof number on 

temperature profiles. 
 

 
 

Fig.11c. Effect of the solutal Grashof number on nanoparticle volume fraction profiles. 
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, , Pr, , Gr, Gc.Nt  The local Nusselt number decreases with increasing the value of , , , , , Len M Nt Nb  

while it increases with , , , Pr, GrMe    and Gc.   
 
Table 2.  Numerical values of the local skin friction coefficient  and local Nusselt number for different values 

of , , , , , , Pr, , , Le, Gr, Gc.n Me M Nt Nb      
 

n   Me  M        Pr   Nt Nb  Le  Gr  Gc C fx
 '( )0  

0.1 0.5 0.5 0.3 0.2 0.2 2 0.2 0.2 1 0.2 0.2  .0 8769320   .1 6095227  
0.5             .0 8966525   .1 4726219  
1.0             .0 9105113   .1 3746093  
0.1 0.1                   .0 7935226   .1 2361965  

 0.3            .0 8257680   .1 3901869  
 0.5            .0 8769320   .1 6095227  
 0.5 0           .0 6025063   .1 8110483  
  0.4           .0 8329334   .1 6435458  
  0.8           .0 9891846   .1 5196803  
  0.5 0.2          .0 9610876   .1 6769677  
   0.3          .0 8538096   .1 6095227  
   0.4          .0 7684520   .1 5543778  
   0.3 0.1         .0 9005724   .1 6054187  
    0.3         .0 8122373   .1 6126975  

    0.5         .0 7415375   .1 6169022  
    0.2 0.2        .0 8538096   .1 6095227  
     1.0        .0 8628244   .1 6085893  
     1.8        .0 8725477   .1 6076003  
     0.2 0.7       .0 8850943   .0 9019572  
      1.4       .0 8785530   .1 3338289  
      2.1       .0 8767173   .1 6499348  
      2 0.1      .0 8983398   .1 6530801  
       0.2      .0 8769320   .1 6095227  
       0.3      .0 8575574   .1 5687999  
       0.2 0.1     .0 8488078   .1 6412756  
        0.2     .0 8769320   .1 6095227  
        0.3     .0 8867819   .1 5979806  
        0.2 1    .0 8769320   .1 6095227  
         3    .0 8828147   .1 5064577  
         5    .0 8841778   .1 4656549  
         1 0.2   .0 8769320   .1 6095227  
          0.4   .0 7937235   .1 6651801  
          0.6    .0 7144982   .1 7149700  
          0.2 0.0  .0 9073748   .1 5730432  
           0.1  .0 8918116   .1 5919943  
           0.2  .0 8769320   .1 6095227  
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4. Conclusions 
 
 This present investigation is a worthwhile attempt to study the problem which involves MHD flow 
and heat transfer for non-Newtonian Powell-Eyring nanofluid flow past a nonlinear stretching sheet with slip 
velocity. Suitable dimensionless transformations are used to change the governing partial differential 
equations into ordinary ones. These equations were solved numerically by using the shooting method. The 
results were presented graphically and the effects of the emerging flow parameters on velocity, temperature 
and nanoparticle volume fraction profiles and discussed in detail with physical interpretations. It is found 
that the flow parameters , , ,n Me M   reduce the non-dimensional velocity profiles f whereas the velocity 

profiles f   increase with the increase of , Pr, , Gr, Gc.Nt  The effect of ,n  enhances both the temperature 

and nanoparticle volume fraction profiles. It is noticed that as , Pr, Gr,GcMe  increase the temperature and 

nanoparticle volume fraction profiles decrease as the effect of non-Newtonian fluid parameter   then 
enhances the temperature profiles. The effect of the magnetic field parameter M is to enhance the 
temperature and nanoparticle volume fraction profiles, as the effect of thermophoresis parameter Nt is to 
enhance the temperature and nanoparticle volume fraction profiles, whereas the nanoparticle volume fraction 
profiles decrease with the increase of Nb and Le. Finally, it is found that the skin friction coefficient value 
decreases with the increase of the values , , , , Nb, Len Me M , while it increases with , , Pr, , Gr, Gc.Nt   It 

is also seen that the heat transfer coefficient ( )0  value decreases with increasing the values of 

, , , , Nb, Len M Nt  while it increases with increasing values of , , , Pr, GrMe   and Gc.  

 
Nomenclature 
 
 B0   magnetic field strength 

 C  nanoparticle volume fraction 
 C fx

  skin friction coefficient 

 C   ambient fluid concentration 

 c   positive constant 
 DB    Brownian diffusion coefficient 

 DT   thermophoretic diffusion  coefficient 

 'f   dimensionless velocity 

 Gc  solutal Grashof number 
 Gr  thermal Grashof number 
 k   thermal conductivity 
 Le  Lewis number 
 M  magnetic parameter 
 Me  melting parameter 
 Nb  Brownian motion parameter 
 Nt   thermophoresis parameter 
 Nux   local Nusselt number 

 n   power-law index 
 Pr  Prandtl number 
 Rex   local Reynolds number 

 T   temperature 
 Tm   surface temperature 

 T   ambient fluid temperature 

 ,u v   velocity components 

 uw   surface velocity 



176  N.Vijaya Bhaskar Reddy, Kishan Naikoti and C.Srinivas Reddy  

 qw   wall heat flux 

 x, z  coordinate axes 
    thermal diffusivity 

 ,c1   material constants 

 ,    fluid parameters 

    velocity slip parameter 

    dimensionless temperature 
    dynamic viscosity 

    kinematic viscosity 

  c f   heat capacity of fluid 

  c p   effective heat capacity of nanoparticles 

 f   density of base fluid 

    electrical conductivity 
 ij   extra stress tensor 

 w   wall shear stress 

    dimensionless nanoparticle volume fraction 
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